
SOFIA's Choice: Scheduling Observations for an Airborne Observatory

Jeremy Frank, Elif Kurklu*
Computational Sciences Division

NASA Ames Research Center, MS 269-2

{ frank ,ekurklu } @email, arc .nasa. gov
Moffett Field, CA 94035

Abstract

We describe the problem of scheduling observations for an
airborne observatory. The problem is more complex than tra-
ditional scheduling problems in that it incorporates complex
constraints relating the feasibility of an astronomical obser-
vation to the position and time of a mobile observatory, as
well as traditional temporal constraints and optimization cri-
teria. We describe the problem, its proposed solution and the
empirical validation of that solution.

Keywords: Planning, scheduling, stochastic search, con-
straint satisfaction, astronomy, flight planning

Introduction

The Stratospheric Observatory for Infrared Astronomy
(SOFIA) is NASA's next generation airborne astronomical
observatory. The facility consists of a 747-SP modified to
accommodate a 2.7 meter telescope. Employing a suite
of optical, infrared, and sub-millimeter instrumentation, the
observatory spans operational wavelengths of 0.3 to 1600
microns. SOFIA is expected to fly an average of 140 sci-

ence flights/year over it's 20 year life time, double the pre-
vious rate of the KAO. The SOFIA telescope is mounted aft

of the wings on the port side of the aircraft and is articulated
through a range of 20 to 60 degrees of elevation. The tele-
scope has limited lateral flexibility; thus, the aircraft must
turn constantly to maintain the telescope's focus on an ob-
ject during observations. Most flights will originate and ter-
minate at Moffett Field, CA; therefore, it is necessary for the

observatory flight plans close in on themselves. This typi-
cally requires an astronomical observing plan covering both
Galactic and extra-galactic targets.

A significant problem in future SOFIA operations is that
of scheduling Facility Instrument (FI) flights in support of
the SOFIA General Investigator (GI) program. GIs are ex-
pected to propose single observations, and many observa-
tions must be grouped together to make up single flights.
The SOFIA science staffis expected to have 3 - 4 facility sci-
ence instruments to support GIs. Approximately 70 GI flight

per year are expected, with 5-15 observations per flight. The

*QSS Group Inc.
Copyright @ 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

scope of the flight planning problem for supporting GI ob-
servations with the anticipated flight rate for SOFIA makes
the manual approach for flight planning daunting. There has
been considerable success in automating the scheduling of

jobs in a wide variety of industries with many different types
of constraints. In this document, we describe the application

of automated scheduling techniques to this problem.

Problem Description

In this section we describe the details of what we call the

Single Flight Planning Problem (SFPP). We divide the de-
scription into two components. We first describe the rules of
the SFPP domain, and then we describe the inputs that are
needed to define an instance of the SFPP.

Inputs and Objective

The scope of the problem we consider here assumes that
a number of individual observation requests from GIs have

been rated and accepted for observing. We then consider the
problem of attempting to schedule a subset of these obser-
vations on a single flight. The input to the SFPP is defined
as follows:

• A set of observation requests. Each request consists of

- an object's Right Ascension (RA) and Declination
(Dec)

- its observation duration.

- its priority.

- its earliest start time and latest end time.

• A flight date.

• A flight duration.

• A flight horizon (i.e. earliest takeoff time and latest land-
ing time).

• A designated takeoff and landing airport (which need not
be the same.)

The objective is to find a flight plan that maximizes the
summed priority of the observations of the observations per-
formed. Since it is intractable to find the best possible plan,
we will relax this constraint and limit ourselves to search-

ing for good plans that perform many observations of high

priority.

The Single Flight Planning Domain

The principal constraints that govern the SFPP is that which
governs when a particular observation can be viewed from
the aircraft, and how the aircraft's position evolves over the
course of a flight. The first important point is the equation

that governs the elevation of an object given its coordinates
and the position and time at which the observation is per-
formed.

We will follow the conventions in Meeus (Meeus 1991)

in defining the visibility conditions for an astronomical ob-
ject and the equations of motion of the aircraft that follow.
Meeus uses the following definitions:

• a is the RA of the object to be observed.

• _ is the Dec of the object to be observed.

• ¢ is the Earth latitude at which the observation occurs.
Positive latitudes are in the Northern hemisphere.

• L is the Earth longitude at which the observation occurs.
Positive longitudes are measured West from Greenwich.

• 0 is the "time" I at which the observation is performed.

• h is the elevation angle of the object relative to the horizon
at the location of the observation. Positive elevations are

above the horizon.

• A is the azimuth of the observation at the location of the

observation. Azimuth is measured in degrees West, as-

suming that 0 degrees is due South.

Suppose all quantities except h and A are fixed. We can
solve for h and A as follows:

H : 0 - L - a (1)

sin h = sin 0 sin 6 + cos 0 cos c_cos H (2)

sin H
tan A = (3)

cos H sin 0 - tan c_cos 0

As mentioned previously, since the telescope has mini-
mum and maximum elevation limits, there may be times

when an object is not visible. Figure 1 shows a plot that
shows when an object is within and outside the telescope's
elevation limits as time passes.

Also mentioned previously, the aircraft must turn contin-
uously during an observation in order to keep the object in
view during an observation. Figure 1 also shows the direc-
tion that the aircraft must fly in order to observe the object
over time, at a fixed position. During an observation, the
aircraft's ground track will be a curve. The consequence is
that the position of the aircraft after completing an activity is
a complex function of the object's coordinates and the start
time. Beginning with the previous equations describing the
azimuth of the observation, the equations of motion of the
aircraft can be derived. Suppose the ground speed V of the

1Time, in this case, refers to Geenwich Sidereal Time, which is
related to how long it takes the Earth to orbit the Sun.

_SE

_un_r 5_"1SC _l _ARtNO : z_

Figure 1: Visibility and azimuth of an observation per-
formed over Moffett Field, CA. as a function of time. The

gap in the graph indicates that the object elevation is below
20 degrees, and the dotted line indicates that the object el-
evation is above 60 degrees. Notice how the azimuth can
vary greatly over periods of time as short as half an hour.

aircraftisknownandconstant,therelative bearing 2 of the

telescope is r, and that the Earth is a sphere whose radius
is a. Then the equations of motion are wrong due to sign
error because of funny definition of azimuth

d.__= Vcos(A - r) (4)
dt a

dL _ Vsin(A - r) (5)
dt a cos 0

where we solve for A using Equation 3. We use a sim-

ple model of SOFIA's activities when planning flights. The
observatory can be on the ground, taking off, landing, per-
forming a turn, performing a flight leg, or performing a dead
leg. Aright leg is a period of time during which an obser-
vation is taking place. The aircraft's final position is deter-
mined by solving Equations 4 and 5. We assume that the
target remains fixed throughout the flight leg. A dead leg
is a leg during which no observation is taking place. Dead
legs are needed to reposition the aircraft in order to enable
observations. The aircraft's final position is found by as-

suming that the ground track is a Great Circle on the surface
of the sphere whose distance and heading are determined by
the planner. Thus, the planning problem requires making
the following choices:

• Which observations to perform.

• The order in which the observations are performed.

• The takeoff time.

• Whether or not dead legs are performed.

• Dead leg duration and heading.

Algorithm Description

In this section we describe the search algorithm we devel-

oped to solve the SFPP. We first motivate our design, then
describe the algorithm and heuristics in detail.

Choice of Search Algorithm

If we look at the description of the SFPP domain, we can
get an initial guess as to the search space. Notice that there
are no constraints on the choice of dead leg heading or dura-
tion. If time were modeled as a continuous quantity, then the

search space would be mathematically infinite; even if time
were modeled as an integer, the search space would be quite

large. The same issue applies to selecting the heading of
dead legs. Without considering these problems, the search
space is "merely" combinatorial: let N be the number of
observations. Then the search space is

N

2the direction the telescope points relative to the direction of
motion of the aircraft

f

_

h

Figure 2: Aright plan.

This covers the selection of K observations from N to

be present in the plan, the possible permutations of each
of these observations in the plan, and finally the choice of
whether or not an observation is in the plan. It is clear
that as the number of observations grows large, the search

space also grows large. For these reasons, we omit complete
search algorithms such as branch-and-bound from consider-
ation; these algorithms are unlikely to find reasonable plans.

Furthermore, we observe that it is necessary to know both
where an observation begins and when an observation be-

gins in order to know where the aircraft is after the obser-
vation ends. This can be seen due to the fact that Equations

4 and 5 describe an initial value problem; we must compute
the azimuth A given the position of the aircraft and the time
the observation is performed in order to determine the air-
craft's movement. At the present, we solve these constraints
via Euler's method (Ferziger 1981). It is also necessary to
know where and when the observation begins to determine
whether or not the observation is feasible, since this requires

ensuring that the elevation constraints are not violated dur-
ing the observation. While these considerations do not elim-
inate local search algorithms from consideration, we chose

a simpler algorithm to begin with.
Since we need to know the location of the aircraft and

the time of the aircraft in order to evaluate candidate flight

legs, we began with a progression planning algorithm that
simulates the flight from takeoff to landing. The algorithm

proceeds by evaluating the observations to perform next us-
ing a combination of lookahead and heuristics that assess

Lookahead(O ,K,P)
K is the lookahead distance, P is the plan

repeat K times
Q=O
while N is not empty

for each unscheduled observation o E 0

if Feasible(o,P)
Q = Qu (o,Evaluate(P[[o))

if Q not empty
o' =Select(Q)

P = Fifo'
remove o t from 0

else break
return P end

Figure 3: A sketch of the Lookahead phase of the SFPP
Flight Planning Algorithm.

flight plans. The algorithm can potentially perform a large
number of flight leg construction steps, as well as searching
for dead legs to enable observations (more on this in Section
• To minimize these costs, instead of using a full lookahead,

we use the heuristic to guide the selection of observations
used in the lookahead phase as well as to commit to the next
observation in the plan. The heuristic evaluations are used

as the input to a stochastic selection algorithm. This results
in a planning algorithm that is simple, fast, and can trade
off between exploration and exploitation by virtue of how
biased the stochastic selection is towards greedily selecting
the best observation. The search algorithm is defined in Fig-
ure 4.

The complexity in the lookahead phase stems from calls
to the function Feasible(o, P). This function ensures that an
observation does not violate any of the constraints by con-
structing a dead leg if necessary, and constructing the flight
leg to check visibility constraints. It also constructs a dead
leg to the landing airport to ensure that the aircraft is not
too far away after performing the observation. The routine
Select(Q) uses the heuristic evaluations of each candidate

extension to the plan; this routine can use any strategy rang-
ing from purely greedy to stochastic functions that ignore
the heuristics.

The overall algorithm uses the previously defined func-
tion Lookahead0 in two ways. The first is to select a good
takeoff time from the range of possible times. The second is
to evaluate the impact of adding each remaining feasibleob-
servation to the plan. The Lookahead0 function heuristi-
cally constructs a short flight plan that extends the existing
plan, then uses a variant on the same heuristic function to
evaluate each of these plans. The Select() function is then
used to choose which observation will extend the plan.

We now analyze the complexity of the algorithm we have
defined. We will analyze the complexity in terms Of calls
to Feasible(), which comprises some number of flight leg
and dead leg construction steps. Let us assume that the start
time has been selected. Let N be the number of observa-

tion requests, let K be the number of observations used in

Forw ardPlan(K ,O ,H ,S ,P , D)
K is the lookahead distance, N is the set of observations
S is the number of start time samples, P is the plan

H is the set of possible takeoff times, D is the flight duration
Q=O;P'=O
repeat S times

choose a value h C H

p'-_ P'tlh
Pr=Lookahead(O,K,P')

Q = @5 (h,Evaluate(P'))
h=Select(Q)
P = PIIh
while 0 not empty

Q=O;P'= 0
for each unscheduled observation o E 0

if Feasible(o,P)

P' = PI [o # o includes dead leg, if necessary
P_=Lookahead(K,0,P_)
Q = Qu (o,Evaluate(Pt))

if Q not empty
o t =Select(Q)

P = PTIo'
remove o' from 0

else
0=0
break

return P
end

Figure 4: A sketch of the SFPP Flight Planning Algorithm.

thelookaheadstep,andletM be the maximum number of
observations that can be in any flight plan. Then the algo-
rithm takes O(N2KM) flight leg and dead leg construction

steps. The proof is as follows: For each call to Lookahead0,
we construct a plan with at most K steps, in which we call
Feasible() for each of the observations not scheduled during
the lookahead phase. This number is bounded above by N.
Thus, each call to Lookahead costs O(NK) calls to Feasi-

ble(). A plan is assumed to have at most M steps. For each
of these steps, we call Lookahead at most N times, since
we must consider extending the plan by each unscheduled
observation. In addition, for each of these steps, we make
at most N calls to Feasible() to decide which observations
must be evaluated. Thus, we have O(N2KM) calls to Fea-
sible(). The cost of evaluating S start times is S calls to the
Lookahead() function, which is dominated by the rest of the

algorithm.

Constructing Dead Legs

The feasibility check Feasible(o, P) attempts to construct a
flight leg for observation o after executing the flight plan
P. This consists of determining whether or not the visibility
constraints are violated during the flight leg, and ensuring
that the aircraft can fly to the landing airport after the flight

leg is finished. If there is insufficient time to both perform
the observation and fly to the landing airport, then the ob-
servation is considered infeasible. However, if the visibility

constraints are violated, it may be possible to construct a
dead leg to reposition the aircraft or delay the observation.
For example, if the object is just below the horizon and is

rising, either flying towards the object or delaying the ob-
servation by a short time can make the observation feasible.

In a perfect world, the goal is to find the shortest possible
dead leg that enables a particular observation given the air-
craft's position and the time. Unfortunately, it is difficult to
pose this problem as a closed-form mathematical optimiza-
tion problem. Thus, the Feasible() check conducts a search
over candidate dead legs that may enable the observation.
The search space for this consists of all possible headings
and dead leg durations, which is very large. We restrict
this search by limiting the maximum dead leg duration, con-
straining the dead legs to be multiples of a constant value,
and restricting the possible heading changes to be multiples
of a constant value. These values are parameters to the flight

planning algorithm.
Originally, we began searching for dead legs by iterating

over possible dead legs in order of their duration. This itera-
tion ceased as soon as a dead leg was found that enabled the
observation. However, we made the search more efficient by
first determining the minimum change in latitude (subject to
restrictions on the allowed dead leg durations) needed to en-
able the observation. This is done by conducting a linear
search over dead leg durations and restricting the headings
to either due North or due South. A shorter dead leg en-

abling the observation might exist; for instance, if the object
is below the minimum elevation and rising, flying towards it
will minimize the time until it is visible. So we attempt to

find a dead leg of shorter duration. We do not need to search
dead legs that change the latitude in the reverse direction, as

Feasible(o, P)
D is the maximum dead leg duration
#[is the dead leg increment, E is the heading increment
Construct flight leg for o
Construct dead leg to landing airport
if the flight duration and object visibility constraints are satisfied

return true

d'= duration of dead leg enabling o by changing latitude
e'= heading of dead leg enabling o by changing latitude
if d_ > D

return false

for d = d' to 0 by -[
noDeadLeg=true

Search headings +/- 90 degrees from latitude changing heading
for e = e' - 90 to e_ + 90 by E

Fly dead leg specified by d, e
Construct flight leg for o
Construct dead leg to landing airport
if flight duration and object visibility constraints are satisfied

noDeadLeg=false
feasible = true

deadLeg= (d, e)
break

if noDeadLeg==true
break

if noDeadLeg==true and feasible == true
o = deadLeg I[o
return true

they are guaranteed to be longer than the dead leg we just
discovered. As soon as we find a dead leg duration which
could not enable the observation, the procedure halts. Note

that this procedure neither finds the shortest dead leg, nor
even guarantees to find a dead leg if one exists, because of
the discretization of the search space.

As can be seen from the sketch of this procedure, each
call to Feasible() results in at most -_- ÷ _ constructions
of flight legs, enabling dead legs, and dead legs to return the
aircraft to the landing airport. However, in many cases the
actual number may be much smaller.

Heuristics

Heuristics play two roles in the SFPP algorithm described
above. They are used to decide which observations are
added during the lookahead phase, and they are used to com-
mit to the next observation in the plan based on the results
of the results of lookahead. As we have stated previously,
the evaluation criteria are identical, and can be viewed as

a mapping from a flight plan P to a real number. In this
section, we describe the heuristics in detail.

A good flight plan is one that observes many high val-
ued observation requests, but takes as little time as possible.
Indirectly, this means minimizing the amount of dead leg
time. A heuristic should also pay attention to how much
time is needed to get the aircraft to the landing airport; if
observations naturally carry the aircraft towards the landing

airport,thatmayreducedeadlegtimetolandafterobserva-
tionsarecompleted.However,plansthat"loiter"overthe
landingairportmaynotenablethemostimportantobserva-
tions.Afinalpointisthataircraftturnscostsometimemore
defense of why this is needed.

We have identified four features of a flight plan that serve
as the input to heuristics:

1. Importance: the summed priority of the observations per-
formed in the flight plan

2. Efficiency: the summed duration of flight legs divided by
the total flight duration

3. Dead leg home distance: the amount of time required to
fly to the landing airport

4. Turn amount: the total degrees of heading changes be-

tween flight legs

Some of these features work in opposition to each other.
Relying on importance more than efficiency may lead to
poor choices when a high priority observation is very in-
efficient. Relying on efficiency more than importance may
lead to poor choices when high priority observations do not
lead to great inefficiency. For this reason, we associate with
each of these features a real valued weight between 0 and 1.
Our heuristic then maps a flight plan into a real number by
summing the weighted value of each feature. We can thus
express a number of heuristics that play these features off
each other in an attempt to identify a good heuristic.

The heuristic we describe is used in two different con-
texts. In the call to Lookahead0, we use the heuristic to

build the best plan possible plan conditioned on an action,
and intend only to use the resulting plan to assess the value
of that action. In the main routine of the planner, we use the
heuristic to assess the different plans we constructed in the
lookahead phase, and choose the next action based on the
values of the different plans. Thus, we distinguish between
the weights used for the heuristic depending on the context
in which the heuristic is used.

Implementation Details

We modeled the SFPP using the Extensible Universal Re-

mote Operations Plannning Architecture (EUROPA), devel-
oped at NASA Ames Research Center (Frank & J6nsson
2003). EUROPA is a constraint-based planning system
(Smith, Frank, & Jdnsson 2000) that enables the modeling

of complex planning and scheduling domains. Planning do-
mains are described in terms of attributes representing par-

ticular aspects of the world that evolve over time, and in-
tervals describing the state of an attribute over a contigu-
ous time period. The simple model of aircraft activities de-
scribed in section is easily transcribed as a EUROPA model.
EUROPA also provides an object-oriented mechanism for
representing partially completed plans. This mechanism
represents plans as Dynamic Constraint Satisfaction Prob-
lems (DCSPs) (J6nsson & Frank 2000) and provides au-
tomatic constraint enforcement during planning. EUROPA

00D D00
QQ DD

0 D

Figure 5: A pictoral representation of the search process.

also provides mechanisms for incorporating domain specific
constraints such as the elevation and flight dynamics con-

straints present in the SFPR The mechanism also provides
an API that allows many different kinds of search algorithms

to be constructed on top of it, thus providing considerable
flexibility. We implemented the algorithm described in sec-
tion on top of the API provided by EUROPA.

Analysis

In this section, we analyze the performance of the flight
planner algorithm. We first describe the source of our prob-
lem instances. We then describe some preliminary exper-
iments to determine good parameter settings for the algo-
rithm parameters. We then describe experiments to deter-
mine the effectiveness of the algorithm using the parameter
values we felt were most suitable on two different classes of

flight planning problems.

Sample Problems

The SOFIA observatory is the successor to the Kuiper Air-
borne Observatory (KAO), which performed infrared astro-
nomical observations between 1974 and 1995. NASA Ames

Research Center has many years of archived flight plans
that were executed aboard KAO. We obtained from KAO

astronomers a set of flights that they felt were representa-
tive of the flights that will be performed on SOFIA. These
flights were flown from Moffett Field, CA; Honolulu, HI
and Christchurch, NZ between 1988 and 1995, and occurred
between the months of April and November. The archived

flight plan data contains only a specification of the flight
plan that was actually executed. It contains no indication
of what set of requests were considered when making the
plan. Furthermore, the flight plans reflect considerations
such as restricted airspace and predicted winds that our plan-
ner cannot yet handle. Nevertheless, they provide a reason-

Index I 2 3 4 5 6 7 8 9 10 11

Airport H H H H M M M M M M M

Obs 9 9 10 10 7 8 8 6 10 8 8

Dur 437 432 440 ,._I 460 495 500 515 610 470 600

Index 13 14 15 16 17 18 19 20 21 22 23

Airport M M M M M M M M M M M

Obs 11 10 8 9 10 8 8 8 9 9 6

Dur ,1-32 437 445 439 4.40 449 448 441 4ZO 442 293

Index 25 26 27 28 29 30 31 32 33 34. 35

Airport M M M M M M M M M M M

Obs 7 4 7 6 7 9 8 11 10 8 7

Dur 440 316 4.43 4A0 aA.3 451 442 ,143 437 448 438

Index 37 38 39 40 4l 42 43 44 45 46 47

Airport M M M M M M M N N N N

Obs 7 3 9 8 8 8 4 10 8 8 8

Dur 385 232 447 4_.2 4_.1 4.'$1 192 495 470 460 465

121nq ex

M.Air ion

6 # (_bs

39_m ex

24_ir Jorl

_IH O _s

8 In, ex

-_3St ir Jort

36 0 _s

M In, ex

7Air Jorl80 O)s

48

,Sty;

L_a_

1 2 3 4 5

M M M M M

23 23 23 32 32

13 14 15 16 17

M M M M M

61 61 6l 61 61

25 26 27 28 29

M M M M M

44 44 _ 58 58

37 38 39 40 41

N N H H H

24 24 I 38 38 38

6 7

M M

32 32

18 19

M M

15 15

30 31

M M

58 58

42

H

38

8 9 lo 11 IA

M M M M M

27 27 27 61 61

20 21 22 23 24

M M M M M

15 15 t5 _ .$4

32 33 34 35 36

M M M M N

58 58 58 58 24

1re 7: Characteristics of one-month duration Multiple

instances.

Figure 6: Characteristics of Single Day Instances.

able benchmark to compare the performance of our planner.
For this reason, we created two sets of problem instances

using the archived flight plans.
The first set of problem instances were designed to test

the basic performance of the algorithm. These problem in-
stances were created using a single archived flight as the ba-
sis of each instance. As such, we refer to them as the Single

Day Instances. Each observations performed in the archived
flight was converted into a request to observe the object for
the same amount of time it was observed in the archived

plan. We gave all observation requests the same priority 3
The flight was requested to take off and land at the same air-
ports used in the archived plan. The flight was requested to
take less than 1.1 times as long as the archived flight. Fi-
nally, the flight was requested to take off no earlier than 30
minutes before the archived takeoff time, and land no late
than 30 minutes after the archived landing time. The result

is a problem instance for which there is a flight that enables
all of the observations, but that solution has been obscured

by relaxing the data in the archived plan. Furthermore, since
the instance does not specify either winds or restricted flight
zones, it is possible that shorter plans than the archived ones
could be found.

The table below lists some salient characteristics of the

Single Day Instances. We tabulate the number of observa-
tions, the archived flight duration, and the airport. In only
one case did the takeoff and landing airports differ; in this
case, the flight plan began at Moffett Field and ended at
Honolulu. The instance numbers in this table will be used

to present results of our algorithm later in the paper, ta-
bles too large, any way to shrink them? Also, problem
in that all tables indexed 1-?? Thus, in the graphs, lit-

tle way to distinguish a problem instance except to read
the graph caption. Perhaps add something to the prob-
lem indices like S-1 for single-day instance 1, M-2-1 to
indicate Multi day instance, 2 month, instance 1? This

gets messy fast as well as requiring regeneration of all
of the graphs. Also, better to present the flight efficiency
for these flights rather than the number of observations?
DO we need both?

3The KAO astronomers had indicated informal object priorities
for only a subset of the flight plans delivered to us, and had no basis
to compare two flight plans with different objects except for total
observing time.

Index 1 2 3 4 5 6 7 8 9 10 11 12

Airpo_ M M M M M M M M M M M M

Obs 76 76 76 76 76 76 76 76 76 55 55 55

Index 13 14 15 I6 17 18 19 20 2l 22 23 24

Airpo_ M M M M M M M M M M M M

Obs 55 55 55 55 102 102 102 102 102 102 102 102

Index 25 26 27 28 29 30 31 32] 33 34 35 36

Airpo_ M M M M M M M M] M M M MObs 102 102 102 102 102 62 62 62_ 62 62 62

Index 37 38

Airpo_ M M

Obs 62 62

Figure 8:
stances.

Characteristics of two-month Multiple Day In-

The second set of problem instances was designed to push
the planner by ensuring that not all observations could be
scheduled. These instances were constructed from the first

set by merging requests for different flights. Thus, we refer
to them as the Multiple Day Instances. To ensure that ob-
servations were still possible, we merged flights that were
originally executed within one or two months of each other
during the same calendar year. With one exception, we only
merged flights using the same airports. We adjusted the
flight duration to be the maximum of the flight durations of
the old problems used to construct the new one. In addition,
we adjusted the earliest takeoff time to be the minimum of
the earliest takeoff times of the old problems, and the lat-

est landing time to be the maximum of the latest landing
times of the old problems. We then generated one instance
with the set of all of the requests and the new duration, take-

off and landing times, for each date corresponding to the
contributing Single Day Instances. Due to the variability
in the number of observations in the Single Day Instances
and number of flights taking place within a short period of
time, the number of observations in these larger problems
varies widely. In the following table we describe Multiple
Day Instances generated by combining problem Single Day
Instances flown within one month of each other.

In this table we describe Multiple Day Instances gen-
erated by combining Single Day Instances flown within 2
months of each other.

which instances are these? One set of flights in August
of 1995 flew observations from Moffett Field, CA, and sub-

sequently from Honolulu, HI. The Multiple Day Instances
was extended to merge flight plans from both of these loca-
tions. This set of problems is somewhat different from the
others, in that we expect that some of the observations might
be somewhat more difficult to schedule. For instance, an

observationthatcouldbeperformedoverHawaiimightbe
difficultor impossibletoschedulewhenflyingoutofCal-
ifornia.Thus,weconsiderthissubsetof problemstobe
especiallyinteresting.

It isworthnotingsomefactorsaboutourtestproblems.
Whiletheproblemdescriptionadmitsvaryingobservation
priorities,ourtestprobleminstancesallhadidenticalprior-
itiesforobservations.Whiletheproblemdescriptionallows
forconstraintsonthelegaltimestoperformanobservation,
ourproblemshavenoadditionalconstraintsbeyondthose
imposedbythetakeoffandlandingtime.Finally,theprob-
lemshaveknownsolutions,andthusmightbeconsidered
"easy"for thisreason.Ourproblemformulationstrategy
ensuresthatthesesolutionsaredisguisedbyincreasingthe
searchspacein amannerconsistentwithourexpectations
ontheactualflightplanningproblems.

ParameterSettings
Weconductedpreliminaryexperimentsona smallsetof
problemsfromtheSingleDayInstancesinordertochoose
goodparametervaluesfor thealgorithm.Wechoseone
flighteachfromMoffettField,CA,Christchurch,NZand
Honolulu,HItoperformourinitialexperiments.

Weconsideredthefollowingparameters:
• Whethertoincludeoromiteachfeatureof theheuristic

whencalledfromLookahead.
• Whethertoincludeoromiteachfeatureof theheuristic

whencalledfromForwardPlanner.
• Lookaheadvalue.
• Numberofstarttimes.
• Theproportionof thetimetheheuristicisusedtodrive

greedyselectionasopposedto usingtheoutputof the
heuristicprobabilistically.Wealloweddifferentpropor-
tionsfortheSelectfunctioncallsinLookaheadandinthe
mainalgorithm.
Initially,wedidnotvarytheparametersgoverningthe

searchfordeadlegs.Fortheseexperiments,eerestricted
themaximumdeadlegdurationto4hours,thedeadlegin-
crementto 1minute,andtheheadingincrementto 7.5de-
grees.Wedescribeexperimentsvaryingthedeadlegsearch
parametersinsection.

Wesearchedforcombinationsof parametervaluesthat
ensuredgoodperformanceonthesubsetof problemswe
usedfortheseexperiments.Goodperformanceinthiscase
meantthattheparametersettingsenabledthealgorithmto
findschedulesin whichall of theobservationswereper-
formed,andtheoverallflightdurationcameascloseas
possibletothedurationof theflightexecutedintheKAO
archives.

Duetothelargespaceof variationsinthealgorithmset-
tings,weinvestigatedonlyasmallfractionofthepossible
combinations.Ourresultsledtothefollowinginformalcon-
clusions,in roughorderofimportance:
1. Employingasuitablelookaheaddistancewasimportant

to achievinggoodperformance.A lookaheaddistance
of4 observationswassufficienttoachievegoodperfor-
mance.

% of scheduled observations

Figure 9: The percentage of Single Day Instances for which
all observations were scheduled.

2. Using the heuristics greedily was always better than in-
cluding any amount of randomization, both during and
after the lookahead phase.

3. Examining 5 start times was sufficient to achieve good

performance.

4. When evaluating observations in the lookahead phase,
evenly weighting all 4 features of the heuristic achieved
good performance. We did not analyze uneven weighting
of the features.

5. When evaluating observations after lookahead, only Im-

portance and Efficiency were analyzed. When weighted
evenly, the algorithm achieved good performance.

These settings were then used in the experiments that are
described in the following sections.

Single Day Instances

After settling on the parameters of the algorithm, we ran the
flight planning algorithm with these parameter settings on
all of the Single Day Instances. The goal of this experiment
was to ensure that the parameter settings we found were not
biased by the small number of problem instances. Again,

our goal was to ensure that the planner found plans that en-
abled all of the observations, and whose flight duration was
close to that of the plans in the archive.

Figure 9 shows our results. We see that for most of the
problems, we were able to schedule all of the observations.
In those cases when the algorithm could not schedule all
of the requested observations, only one or two observations
were omitted; this is shown by the results in Figure 10.

• 0.833333
•0.875
[] 0.888889
D0.9
[] 0.909091

1

Scheduled observation percentage distribution

2%

t7%

4%

4%

2%

71%

- 3oo

250

200

150

100

5O

Number of trials that scheduled all observations (250 trials)

Figure 10: The maximum percentage of observations sched-

uled for each problem Single Day Instance.

Figure 11 shows how often the planner found plans

scheduling all of the observations. These results indicate

that problem instance difficulty varied widely. In 5 of the

48 instances, the algorithm was able to schedule all obser-

vations every time. However, in 6 of the 48 cases in which

the algorithm found a schedule including all observations,

fewer than 10 tries of 250 successfully scheduled all of the

observations.

Recall that the Single Day Instances limit the duration

of the flight to be 1.1 times as long as the archived flight

plan. We wanted to compare the duration of flights found

by the planner that scheduled all of the observations to the

archived flight durations. Figure 13 shows differences in

the flight duration of the shortest flight for which all obser-

vations were scheduled and the flight duration of the flight

in the archives. From this data we see that the planner can

find plans that take roughly the same amount of time that the

archived plans take and still schedule all of the observations.

There are some exceptions; in three cases, the shortest flight

found by the planner was more than 20 minutes longer than

the archived flight. Overall, however, the results are quite

encouraging.

While the shortest flight plans that schedule all of the

observations look good, what is the average duration of a

flight plan that schedules all of the observations? Figure

12 shows the difference in the average flight duration of all

flights found by the planner that enabled all of the observa-

tions and the duration of the archived flight plan. The news

is somewhat worse here, in that the average flight duration is

Figure 11: The percentage of time all observations were

scheduled by the flight planner.

Difference in flight duration (Original plan dur. - Best dur.)

80-

60

_ 4o

= 20"

i°
-20

-40
2 3 4 5 0 7 8 9 10 11 12 1314 102021 222425262728293031 33353,83?383943,4547

Figure 12: Difference in flight duration between archived

plan and shortest plan found in which all observations
scheduled. The x axis shows the duration of the plan in

the archive minus the duration of the best plan found by the

planner. Problem instances for which the planner did not

find a plan scheduling all observations are omitted.

Difference in flight duration (Original plan dur. - Average dur.)

4o

-30 • i

i!!:!!i_!i:_ii!................
2 3 4 5 _ 7 8 9 101_1213141S 20 2122 24 25 26 27 28 29 30 3_ 33 35 36 37 _ 3_ _ _ 47

Modeli !

Figure 13: Difference in flight duration between archived
plan and average of all plans in which all observations
scheduled. The x axis shows the duration of the plan in the
archive minus the duration of the average duration of plans
including all observations. Problem instances for which the
planner did not find a plan scheduling all observations are
omitted.

frequently as much as 20 minutes longer than the archived
flight duration, and in one case is 34 minutes longer than
the archived flight. However, the news is generally good;
the planner generally finds short flight plan with all of the
observations scheduled. Note that these results should be
taken with a grain of salt, because the archived flights ac-
count for restricted airspace, which tends to lengthen flights,
and nominal winds, which can either lengthen or shorten a
flight. Thus, nothing should be read into the precise differ-
ences in flight duration.

Multiple Day Instances

Some work required to generate the graph I want for
this We then ran the algorithm with the same parameter set-
tings on the Multiple Day Instances. Since no archived flight
matches the Multiple Day Instances we have constructed,
we cannot compare the performance of the algorithm on
these instances to previously generated plans. Our chosen
metric for measuring performance is the flight efficiency,
which is the percentage of the flight spent performing ob-
servations.

Figure ?? shows the performance of the algorithm on the
instances described in Figure 7.

the number of observations scheduled and the shortest du-

ration of the flights. Figure ?? shows the performance of the
algorithm on the instances described in Figure 8.

We see that the algorithm we have developed is able to
find a good flight plan even when there are too many obser-
vations to fit into a single flight.

Figure ?? shows the performance of the algorithm on the
Multiple Day instances in terms of the number of flight plans
found that maximized the number of observations sched-

uled.

Is it worth showing this? Figure ?? shows the Pareto
Frontier for some flight. In this figure, we plot the flight
duration versus the number of observations scheduled. The
Pareto Frontier is the set of all flights for which no flight is

strictly better. In this case, a flight is strictly better than an-
other if either it has the same flight duration but schedules
more observations, or makes the same number of observa-
tions and takes less time. This figure is typical of the results

we see for the output of flight planning.
Given that the Multiple Day Instances are composed of

Single Day instances, and given that we know that all of the
observations can be scheduled, we analyzed the results of

the flight planning to determine how often each observation
was scheduled. We wanted to see if the flight planning al-

gorithm or heuristics led to some biased sampling of the set
of the solution space. To perform this analysis, we looked at
every flight plan generated by the algorithm for some prob-
lem instances.

Figure ?? shows the proportion of the observations that
were not scheduled in any schedule found by the planner.
We see that for some problems this proportion is quite high.
This indicates that, for whatever reason, there is consider-
able bias in the schedules that are actually found. In some
cases we would expect this, for example, for the multi-day
schedule including Moffett and Hawaii requests. In other
cases, this may be an indicator of some sort of actual bias
check to see if the cases where we get low percentages
are composed of single day requests far apart in the cal-

endar, etc.

Tuning Algorithm Performance

In conducting our experiments on the Multiple Day In-
stances, we discovered that algorithm computation time be-

came quite large. The main reason for this was the dead
leg search. As we saw in section, the algorithm may per-
form a very large number of elementary operations during
the search for a short dead leg. The maximum dead leg du-
ration D, dead leg increment E and heading increment I
can all be used to limit the number of prospective dead legs
constructed. However, reducing these prospective dead legs
may come at a cost in the value of the resulting flight plans.
Reducing the maximum dead leg duration to zero may lead
to poor plans because some observations may not be possi-
ble. Similarly, reducing the dead leg or heading granularity
may lead to inefficient plans.

Figure ?? shows the impact of changing D and I on a
problem instances from Moffett; this is instance 19 from the
instances in Figure 8. For each of the parameter settings we
ran 100 samples of the flight planning algorithm. The fig-
ure shows the number of observations scheduled in the best

flight plan found during search. All other algorithm param-
eters were otherwise the same. We see from this figure that

modifying the dead leg search algorithm had little impact
on the number of observations scheduled in the best plans
found.

Figure?? shows the planner speed as a function of the
dead leg search parameter values. We see that the planner
speed increases as the number of candidate dead legs is re-
duced.

Conclusions and Future Work

We have described a telescope observation scheduling prob-
lem motivated by the SOFIA General Investigator program.

The problem is unique when compared to other scheduling
problems in that it involves complex, sequence-dependence
constraints governing the simultaneous apparent motion of
the objects and the observatory. These are complicated by
the requirement that the observatory return to a designated
location. We have described a forward search algorithm
and associated heuristics, and demonstrated that the result-

ing search algorithm performs well on a realistic benchmark

problem.

The problem described in this paper makes a number of
simplifying assumptions. The planner does not account for
restricted airspace, which can influence the order of the ob-
servations and the characteristics of dead legs. The con-
straints that implement the equations of motion for the air-

craft currently ignore wind direction and velocity. In ad-
dition, astronomers may impose additional requests on ob-
servations, such as a minimum observing altitude. Finally,

the flight duration constraint is a surrogate for a variety of
constraints on the fuel consumption profile of the aircraft.

These assumptions are being removed, and are likely to re-
quire some modifications of the planning algorithm in order
to achieve good performance.

The algorithm described in this paper uses an "incom-
plete" lookahead phase, in that only one extension of the
plan is constructed for each unscheduled observation. This
can be generalized to permit the construction of a fixed num-
ber of extensions, should the need arise. However, algorithm

performance does not presently indicate that this is needed.

The algorithm described in this paper assumes that the al-

gorithm parameters remain static during the course of solv-
ing the problem. It would be interesting to consider chang-
ing some of these parameter values as scheduling proceeds.

Not sure how detailed we want to be here Finally, the

algorithm described currently uses a progression-planning
based approach to solving the problem. It is possible to
define local search algorithms for solving this problem as

well. These algorithms may suffer from two different kinds
of problems. Because of the complex nature of the con-
straints, it is difficult to check for observation feasibility un-

less the initial position and time of the aircraft are known.
If the plan is always considered "complete", poor perfor-
mance due to the need to constantly recompute the state of

the plan. Alternately, the plan can be considered "incom-
plete", which saves time performing intermediate computa-
tions, but may lead to infeasible plans that are not detected.
We have formulated an alternate planning algorithm based

on Squeaky Wheel Optimization that employs the Forward
Planner without lookahead as a subroutine. It will be worth-

while to compare the two approaches.

Acknowledgements

We would like to thank Sean Casey, the SOFIA Facility In-

struments Program Chief Scientist, for the time he has spent
describing this problem. We would like to thank Sean Col-
gan and Allan Meyer, former KAO astronomers and mem-
bers of the SOFIA staff, for helping mine the KAO archives
and providing us with benchmark problems. Lastly, we
would like to thank Michael Gross of USRA for his advice
and assistance. This work was funded by the NASA Intelli-

gent Systems Program and the NASA Research Technology

Opportunities Program.

References

Ferziger, J. 1981. Numerical Methods for Engineering Applica-
tions. John Wiley and Sons.

Frank, J., and J6nsson, A. 2003. Constraint-based attribute and
interval planning. Journal of Constraints To Appear.

J6nsson, A., and Frank, J. 2000. A framework for dynamic con-
straint reasoning using procedural constraints. Proceedings of the
Euopean Conference on Artificial Intelligence.

Meeus, J. 1991. Astronomical Algorithms. Willmann-Bell, Inc.

Smith, D.; Frank, J.; and J6nsson, A. 2000. Bridging the gap be-
tween planning and scheduling. Knowledge Engineering Review
15(1).

